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Abstract

The work presented here extends a sequence-to-sequence neural model of lemmati-

zation to the multi-task learning setting, motivated by both potentially improving the

performance of this baseline sequence-to-sequence model as well as by using the task

of lemmatization as a setting in which to empirically investigate some proposed effects

of multi-task learning. Mutli-task learning was implemented with the auxiliary tasks of

auto-encoding and part-of-speech tagging as motivated by both analysis of the original

sequence-to-sequence model as well as by related work.

The baseline model for all languages (English, French, Hindi, Turkish, Croatian and

Hungarian) was improved by one or both of the auxiliary tasks for both of the dataset

sizes investigated. Performance improved by up to 2.25% for models trained using

10,000 training examples and 10.46% for models trained using 1000 training examples.

Examining the behaviour of the multi-task learning model with the auxiliary task of

auto-encoding input words results in the conclusion that the main task of lemmatization

is not being biased towards predicting outputs which would benefit both the main and

auxiliary task (by predicting the input wordform as the output lemma more frequently),

which is one suggested explanation for performance gains made by multi-task models.

Considering the model with the auxiliary task part-of-speech tagging instead suggests

that this auxiliary task provides relevant information to the main task of lemmatization,

for example by allowing it to better identify inputs which do not need to be de-inflected

such as proper nouns. Aside from these two main findings, the amount of training

data is found to have a significant effect on the results as well as the language being

lemmatized.
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Chapter 1

Introduction

Many tasks in Natural Language Processing can be viewed as learning functions to

correctly map input sequences to output sequences, for example tasks involving se-

quences of characters, words or sentences. The task of lemmatization takes as input an

inflected word such as ‘walking’ and outputs the canonical (dictionary) form ‘walk’.

Lemmatization can therefore be viewed as learning to map character sequences to char-

acter sequences and has many important applications, including information retrieval

(Kanis and Skorkovská, 2010) where correctly mapping the superficially different in-

flected words of ‘brought’ and ‘bringing’ to their common lemma ‘bring’ can help to

identify the relation between ‘Was she bringing the cake?’ and ‘She brought the cake.’.

The main difficulty for the task of lemmatization, as with many machine learning tasks,

is dealing correctly with previously unseen inputs as this necessitates learning at times

complex rules as well as the exceptions to those rules. For example, in the morpho-

logically rich language of Hungarian the plural suffix depends on the vowels present

in the word being inflected (Halácsy and Trón, 2006):

(Singular) ! (Plural)
kar ! karok
ber ! berek
lufi ! lufik

There is also difficulty with respect to specific types of ambiguity. For example ‘paint-

ing’ can be used as either a verb or a noun and therefore should be lemmatized to either

‘paint’ or ‘painting’ respectively. In this case the ambiguity lies in the part-of-speech

(POS) tag of the word which has an effect on the resulting correct lemma.

17



18 Chapter 1. Introduction

There have been several statistical models of lemmatization proposed (Chrupała, 2006;

Chrupała et al., 2008; Müller et al., 2015) and recently Bergmanis and Goldwater

(2018) showed improved performance for the lemmatization of over 20 languages with

a sequence-to-sequence neural model of lemmatization, Lematus.

Generally, neural networks map input vectors of a fixed size to output vectors of a

fixed size. This has limitations for sequence-to-sequence tasks, for example in ma-

chine translation where the input ‘I want to go’ in English translates to an output se-

quence of a different length, ‘Je veux aller’, in French. Sequence-to-sequence neural

models (Sutskever et al., 2014) instead map variable length input sequences (of fixed

size vectors) to variable length output sequences and have been shown to perform well

for many sequence-to-sequence tasks including traditionally word-level tasks such as

machine translation (Bahdanau et al., 2014) and character level tasks such as lemmati-

zation (Bergmanis and Goldwater, 2018).

Sequence-to-sequence neural models usually consist of an encoder which builds an in-

termediate representation of the input sequence and a decoder which returns an output

sequence given the intermediate representation as input. Despite attaining impressive

performance, Lematus still under-performs for input tokens which were either unseen

or ambiguous (appeared with more than one lemma) during training, in comparison to

those which were seen during training. A promising extension of the single encoder-

decoder architecture which may allow these issues to be addressed is extending the

model to the framework of multi-task learning (MTL) (Caruna, 1993). Generally, MTL

involves training a model to perform more than one prediction task from a given input.

For example, one possible implementation would be using a single encoder and then

feeding the intermediate representation obtained by this encoder to two or more sepa-

rate decoders which perform different output tasks. In this case the encoder is therefore

influenced by both tasks during training. As discussed by Caruna (1993):

‘MTL uses the information contained in the training signal of related
tasks to bias the learner to hypotheses that benefit multiple tasks.’

MTL therefore incorporates related tasks which can serve as sources of relevant infor-

mation for each other during training.

Apart from this intuitive reason in favour of MTL, there has been convincing empirical

evidence in favour of extending sequence-to-sequence models to MTL for some se-

quence tasks such as machine translation. For example Dong et al. (2015) encoded En-
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glish sentences which were then translated to Spanish, Dutch, Portuguese and French

via separate decoders, obtaining improved BLEU scores for the translation to each

target language. However, the reasons for the improvement caused by MTL are of-

ten less clear with fewer sources of empirical evidence (Lipton and Steinhardt, 2018).

Apart from the motivation of potential improved performance, the task of lemmatiza-

tion therefore also provides a convenient setting in which to analyse the effects of a

specific MTL architecture in an attempt to provide insight into why MTL improves

performance.

In the case of extending a model with the main task of lemmatization to a multi-task

learning framework, two secondary (auxiliary) tasks appear to be particularly relevant,

motivated by both our error analysis of Lematus and also by related work. The first

proposed auxiliary task is auto-encoding, whereby the model simply learns to copy

the input sequence as the output sequence. Bergmanis et al. (2017) demonstrated the

usefulness of auto-encoding as an auxiliary task in a low resource setting for the op-

posite task of morphological re-inflection, which maps from an input lemma ‘walk’

and part-of-speech (POS) tag ‘Verb Present Participle’ to the inflected word ‘walking’.

Together with the fact that our error analysis of Lematus (Section 3.4) indicated that

many incorrect predictions were made when Lematus did not copy the input wordform

as the output lemma but should have, either because it de-inflected a wordform which

should not have been changed or because its prediction had a few consonants predicted

incorrectly, this points towards the auxiliary task of auto-encoding with the hypothesis

that increased bias towards copying the input sequence would improve performance.

For example for the task of English lemmatization 60% of errors made by Lematus

occurred when the input was not copied but should have been.

The second proposed auxiliary task is part-of-speech tagging, which labels words with

their relevant tag such as noun, verb, adjective etc... This is primarily motivated by a

second pattern which emerged in our error analysis of Lematus, when the model erro-

neously applied lemmatization rules to nouns. This was sometimes because the word

is ambiguous and can either be a verb or a noun, for example incorrectly lemmatizing

‘ruling’ to ‘rule’. It also occurred when the noun ended in a sequence commonly used

as a suffix, for example lemmatizing ‘Mohammed’ to ‘Mohamm’. Using part-of-speech

tagging as an auxiliary task is further motivated by the fact that previous non-neural

models of lemmatization make use of POS tagging information (Müller et al., 2015;

Chrupała et al., 2008).
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The first goal of this project was therefore to extend Lematus to the multi-task learning

setting with the auxiliary tasks of auto-encoding and POS tagging in order to poten-

tially improve the performance of this model by providing another source of training

signal. The overall goal of this work was then to empirically investigate specific ques-

tions relating to changes in model behaviour caused by MTL, motivated by obtaining

a better understanding of the effects of MTL in this setting:

1. Does MTL with the auxiliary task of auto-encoding bias the model towards re-

turning the input wordform as the output lemma (copying), therefore benefiting

languages exhibiting a higher number of lemmas being equal to their inflected

wordform?

2. Does the auxiliary task of POS tagging appear to provide information relevant

to the main task of lemmatization?

3. Does the MTL framework benefit lower resource models, which use less training

data, more than it benefits higher resource models, which use more training data?

4. In cases where both auxiliary tasks separately improved performance, does the

use of both auxiliary tasks together further improve performance?

In order to provide as comprehensive an overview as possible given the time avail-

able these questions were investigated by observing the effects in both a medium re-

source setting of 10,000 training examples and a lower resource setting with 1,000

training examples for 6 languages (English, French, Croatian, Hindi, Hungarian and

Turkish) which had different proportions of cases where the desired output lemma is

identical to the input word, and diverse distributions of POS tags, for example with

significantly different proportions of nouns and verbs in comparison to other tags.

These languages also include agglutinative languages which commonly combine un-

changed morphemes to produce inflected words (Hungarian/Turkish) as well as fu-

sional languages which can have spelling changes when morphemes are combined

(English/Hindi/Croatian/French) as this could have an effect on the difficulty of the

lemmatization task.

The following conclusions were reached, among others, as supported by the remainder

of this document:

• Performance for all languages in both the medium and low resource settings

could be improved by extending the baseline sequence-to-sequence model to
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one of the auxiliary tasks.

• There is little evidence that the auxiliary task of auto-encoding biases the model

towards copying, however it improves performance regardless by around 1% in

the medium resource setting and by up to 10% in the low resource setting.

• The auxiliary task of POS tagging improves the model to a larger degree than

auto-encoding in the medium resource setting. It improves performance for ev-

ery language by at least 0.83% and at most 2.25%. For all languages except

English and Hindi the largest improvements are for unseen tokens.

• There is evidence that tagging information helps to correct errors in lemmatiza-

tion which could be helped in theory by knowledge of the part-of-speech tag in

the medium resource setting.

• In the low resource setting, POS tagging improves performance for all languages

except English, although the multi-task learning models often appeared to be

more unstable with higher levels of variance in performance than the baseline

models.

• When both individual auxiliary tasks improved performance individually, usu-

ally using both auxiliary tasks together in addition to the main task results in

slightly higher accuracy than using either task individually. However this is not

unanimously true and in some cases it can be detrimental to performance.





Chapter 2

Background

2.1 Lemmatization

Lemmatization is the task of mapping an inflected wordform to its dictionary (base)

form. This can be naively done by compiling a dictionary of words with their corre-

sponding lemmas from training data and then using this dictionary to select the most

frequently occurring lemma for a given input word. However, building such a dictio-

nary and thus aiming to obtain an exhaustive list of words with their corresponding

lemma(s) is both time consuming and expensive. It also has obvious limitations for

out-of-vocabulary words, which are an inevitable consequence of ever evolving lan-

guages. For example, when testing a child’s ability to grasp morphological rules for

new nonsense words the ‘Wug Test’ (Berko, 1958) found that 91% of children tested

correctly answered that the plural of one ‘wug’ was two ‘wugs’ and 90% replied that

a man who knew how to ‘zib’ was ‘zibbing’. This type of knowledge is not covered

by a simple dictionary approach. An obvious next step would be to build templates

of lemmatization rules, for example removing ‘s’ from the end of inflected nouns in

English. However, identifying these rules can become prohibitive, particularly in mor-

phologically rich languages.

2.1.1 Morphology and Lemmatization

The morphology of a given language and the difficulty of the lemmatization task for

that language are related. More complex morphology, when morphology is defined in

23
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terms of the number of possible inflected forms of a root wordform (Jeong et al., 2010),

where each could pertain to a slightly different meaning of the root form, potentially

implies more difficulty in the lemmatization task as evidenced by the fact that Bergma-

nis and Goldwater (2018) report strong negative correlation between the performance

of their system for lemmatization and the proportion of ‘unseen’ inflected wordforms

in a new set of data for the language in comparison to the set that was used to train the

model.

For example, consider the following phenomena used to inflect base wordforms for

gender, case, time etc... in both English, which is not considered morphologically

complex, and Hungarian, which is:

• Suffixes: Adding morpheme(s) to the end of a wordform

‘cat’+‘s’ ! ‘cats’

‘sing’+‘ing’ ! ‘singing’

• Prefixes: Adding morpheme(s) to the beginning of a wordform

‘un’+‘happy’ ! ‘unhappy’

• Circumfixes: Adding two morpheme(s) either side of a wordform

‘leg’ + ‘nagy’ (big) + ‘bb’ ! ‘legnagyobb’(biggest) (Dressler and Kiefer, 1990)

• Spelling changes at morpheme boundaries

‘alternate’ ! ‘alternating’

‘permit’ ! ‘permitting’

• Irregular Verbs

‘drive’ ! ‘drove’

‘go’ ! ‘went’

• Vowel Agreement: When the suffix depends on vowels already present in the

word and the other properties of the base wordform (Halácsy and Trón, 2006)

‘kar’+‘ok’ ! ‘karok’

‘bér’+‘ok’ ! ‘bérek’

‘fa’+‘ok’ ! ‘fák’

Lemmatization is therefore a task which inherently combines memorization in the form

of recognizing special cases and irregular forms, as well as the task of learning and

applying common rules and patterns governed by the morphology of the language.



2.2. A Neural Model of Lemmatization: [LN]ematus 25

2.1.2 Statistical Models of Lemmatization

Note: from here until the end of Section 3.3 some of the content (although not neces-

sarily the wording) is similar to that of the relevant sections in the proposal for this

project.1 In particular, many of the diagrams used are similar to those of the proposal.

A significant amount of work has been done in building statistical models of lemma-

tization. For example the models of Chrupała et al. (2008) and Müller et al. (2015)

both approach lemmatization as a supervised classification task which chooses the

most probable of a set of pre-defined edit trees mapping an inflected input word to its

lemma. Notably, both of these models jointly model the part-of-speech tag and lemma

of the input word.

Recently, Bergmanis and Goldwater (2018) proposed a neural model of lemmatization,

Lematus, which was adapted from a model of machine translation (Sennrich et al.,

2017) discussed in Section 2.2. Lematus outperformed the models of Müller et al.

(2015), Chrupała et al. (2008) and Chrupała (2006) as well as a dictionary based ap-

proach for 19 of the 20 languages reported. The largest improvements were in terms

of accuracy on input wordforms which were not seen during training, although there

was also improvement for ambiguous inputs which were seen with more than one can-

didate lemma during training. Despite this, both unseen and ambiguous accuracies

under-performed in comparison to overall accuracies and those of words which were

seen during training, leaving room for improvement.

2.2 A Neural Model of Lemmatization: [LN]ematus

2.2.1 Sequence-to-Sequence Models

As outlined in the Introduction, sequence-to-sequence neural models allow neural net-

works to map between variable length sequences of vectors and are therefore well

suited to the task of lemmatization when it is viewed as mapping between sequences

of characters. As proposed by Cho et al. (2014b) the variable length input sequence

of vectors is encoded, using a Recurrent Neural Network (RNN), to a fixed-size inter-

mediate representation which is then decoded to a variable length output sequence of
1Informatics Project Proposal: Investigating Multi-Task Learning for Neural Models of Lemmatiza-

tion Lauren Watson
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vectors, using another RNN. These models are therefore referred to encoder-decoder

models, as depicted in Figure 2.1.

ENCODER DECODER

The 

Brown 

Cow 

La 

Vache 

Brune 

Intermediate

Representation

c 

Input

Sequence

of Vectors 

Output

Sequence

of Vectors 

Figure 2.1: Example of a sequence-to-sequence model for machine translation

In examining how the encoder component works, a Recurrent Neural Network takes

the input sequence of vectors, i1, ...iT , and builds the intermediate representation c in a

step-by-step manner.

Figure 2.2: Example of an RNN architecture where f represents a so-called ’Activation

Function’ such as tanh(x)

As shown in Figure 2.2, this is done by building a sequence of hidden states, h1, ...hT

where each depends on the previous hidden state and the input at that time :

h1 = f (h0, i1)
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h2 = f (h1, i2)

:

hT = f (hT�1, iT )

The intermediate representation c is then is then often defined as the final hidden state

when all inputs have been seen.

c = hT

A similar model is used to decode this intermediate representation into an output se-

quence, using the previously output vectors at each timestep.

There have been numerous extensions to this architecture proposed addressing weak-

nesses found in the performance of these models. For example, Bahdanau et al. (2014)

added a mechanism known as ‘attention’ which essentially allows the model to learn

which part of the input sequence to pay attention to for a given part of the output se-

quence. For example, in translating the phrase ‘The cat and dog’ to French, attention

is intended to allow the model to focus on the input ‘cat’ when outputting the relevant

part of the translation, ‘chat’. Essentially, there is a different intermediate vector c j

used for each output time step j. If the output sequence is o1, ....oJ then for each output

timestep j = 1...J the context vector is defined as:

c j = ÂT
i=0 ai jhi

where hi is the hidden representation obtained as before from the first i inputs. The

weights ai j are learned during training and can be interpreted as how heavily to weight

the representations obtained for each of the input timesteps i = 1, ...T for the output at

time j. This thus addresses the issue of the network potentially ‘forgetting’ the input

sequence by the time it is several timesteps into the output sequence.

Sutskever et al. (2014) proposed a similar architecture to that of Bahdanau et al. (2014)

for machine translation which used a variant on the type of neural network used as the

encoder and decoder, named a Long Short-Term Memory Network (LSTM). LSTMs

add a memory component to RNNs addressing the issue of learning long-term depen-

dencies in sequences by providing access to this memory component as well as the

previous hidden state at each time-step which was was found to improve translation

quality for English-French translation in comparison to both the models of Cho et al.

(2014b) and Bahdanau et al. (2014).
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2.2.2 Nematus to Lematus

Sennrich et al. (2017) provided a toolkit implementing these ideas as a framework

for machine translation, Nematus, which was essentially the model of Bahdanau et al.

(2014) with some extensions. For example, Nematus uses another variant of RNNs

which also adds a memory component although in a slightly different way than LSTMs

and is based on Gated Recurrent Units (GRUs) (Cho et al., 2014a). Nematus is there-

fore referred to as an attentional encoder-decoder model.

Some of the numerous alterations made by Nematus to the architecture of Bahdanau

et al. (2014) include:

• Initializing the decoder hidden states in a slightly different manner

• Add further regularization to the model to avoid overfitting in the form of recur-

rent Bayesian dropout (Gal and Ghahramani, 2016)

As a model of machine translation, Nematus mapped between sequences of words, as

demonstrated in Figure 2.2. Lematus (Bergmanis and Goldwater, 2018) instead applies

Nematus to character sequences, as opposed to sequences of words, as shown in Figure

2.3. Therefore Lematus uses the Nematus model to translate sequences of characters.

Figure 2.3: Example of a sequence-to-sequence model for machine translation

The input sequence is in the form of the characters of the wordform to be lemmatized

with the surrounding characters of the sentence that wordform occurred in, for example
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a window of 8 characters either side of the input wordform. The output was the lemma

of the wordform. Special characters indicate the beginning and end of the input phrase

or output word <w> and <\w> respectively, the start of a new word (<s>), the end

of the context characters to the left of the target word (<lc>) and the beginning of the

context characters to the right of the target word (<rc>). The characters of the word

were separated by a space.

Input: <w> a m <s> n o t <s><lc> k i d d i n g <rc><s> a n d <s>
n o <\w>
Output: < w> k i d <\ w>

Bergmanis and Goldwater (2018) found that a context length of 20 characters had the

best performance for lemmatization. Therefore, at test time Lematus requires only

input words in context.

2.3 Multi-Task Learning

Multi-task learning (MTL) is a general framework within machine learning introduced

by Caruna (1993) which involves performing more than one task using a given model

with the motivation of training signals from related tasks helping each other in some

way. For example, a common paradigm would be to perform more than one task for

a given input, say translating and English input sentence to both French and Spanish

output sentences.

2.3.1 A Framework for Sequence-to-Sequence Multi-Task Learning

MTL has been studied for many tasks involving neural networks (Zhang et al., 2014;

Wu et al., 2015) and was introduced to Natural Language Processing by Collobert

and Weston (2008) who used a convolutional neural network to map input English

sentences to POS tags, semantic roles, chunks etc... . Dong et al. (2015) extended MTL

to sequence-to-sequence tasks for machine translation, proposing using one encoder

and several separate decoders to translate from English into several output languages.

This setting therefore facilitated mapping a single input to several outputs and essen-

tially trained the same encoder but a separate decoder for each desired output task, as

shown in Figure 2.4.
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ENCODER
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Output 
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Figure 2.4: Example of a multi-task sequence-to-sequence model for machine transla-

tion

Luong et al. (2015) then extended the work of Dong et al. (2015) by examining three

potential architectures for extending encoder-decoder models to MTL for sequence-

to-sequence tasks. The first architecture was identical to that of Dong et al. (2015) as

it involved a single encoder and multiple decoders and was named the one-to-many

setting. They also examined the many-to-one and many-to-many settings with multi-

ple decoders and one encoder and multiple encoders and decoders respectively. There

are many alternative architectures for MTL, the above methods are often referred to as

hard parameter sharing as part of the model is explicitly used by all tasks, for example
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the encoder in the one-to-many setting. In contrast soft-parameter sharing (Liu et al.,

2008) is where specific layers of the model are not explicitly shared between mod-

els but instead connected in some other way, for example by penalizing the distance

between the weights in the models.

2.3.2 Empirical Findings

Both the work of Dong et al. (2015) and Luong et al. (2015) was focused on improving

the quality of machine translation using related output tasks. For example, Dong et al.

(2015) reported improved performance by between 0.67 and 1.64 BLEU points when

this setup was used to translate English input to several related languages, namely

Spanish, Dutch, Portuguese and French. Using a similar one-to-many setup, Luong

et al. (2015) reported still more improvement over the reported BLEU scores of Dong

et al. (2015) using parsing of the Penn Treebank as an auxiliary task, even when this

auxiliary task was allowed very little training time in comparison to that of the main

translation task.

Although machine translation and the encoder-decoder architectures are the most rele-

vant to this project, there has been a significant amount of work investigating MTL for

NLP in recent years. In particular, although the reasons for improved performance re-

main generally quite unclear from the reported results to date (Alonso and Plank, 2016;

Bingel and Søgaard, 2017), there has been recent work attempting to isolate why MTL

improves performance when it does. For example, Alonso and Plank (2016) found

that while MTL is not always helpful for the main task of semantic sequence labelling,

when it is the distribution of classes for the target labels of the auxiliary task is im-

portant. For example there is increased improvement for auxiliary tasks such as POS

tagging which have quite small numbers of possible labels and these label classes are

relatively uniformly distributed with mid-entropy and low kurtosis. Luong et al. (2015)

report that a smaller ratio of main task to auxiliary task benefits performance. While

impressive findings, these examples pertain to ‘when’ multi-task learning may help

performance, not always answering ‘why’ multi-task learning helps in these scenarios.

Bingel and Søgaard (2017) find that main tasks which quickly plateau during training

benefit from tasks with which do not plateau as quickly, conjecturing that in this case

the auxiliary task may stop the main task from becoming stuck in local minima during

training and therefore identifying both a ‘when’ and ‘why’.
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Apart from this relative shortage of empirically supported explanations for improved

performance in comparison to the strength of some of the results in favour of MTL,

there are several other conjectured benefits of MTL:

• Training signal from related tasks can bias the model towards choices which

benefit both tasks (Caruna, 1993)

• Regularizing the model (Søgaard and Goldberg, 2016)

• Helping the model to identify which features in noisy training data are most

relevant (Ruder, 2017)

• There is also the fact that MTL implicitly provides more training data for a given

input, even if not all of that data is for the main task there is still more data in

total.

2.3.3 Relation to the Research Questions

In light of the empirical evidence discussed in the previous section, the assertion in

the Introduction that lemmatization provides a convenient setting in which to inves-

tigate some proposed effects of MTL, becomes more clear. The first research ques-

tion of whether or not the auxiliary task of auto-encoding biases the main task of the

model towards predicting the input wordform as the output predicted lemma (thus

auto-encoding the input wordform) would shed light on whether in this specific MTL

architecture (Section 3.1), Caruna (1993)’s hypothesized effect of MTL biasing the

model towards hypotheses that benefit both tasks occurs. This behaviour would po-

tentially improve a specific type of error found in the neural model of lemmatization,

Lematus, which occurs when the input wordform should have been copied but was

not. Although this is a very simplistic view of the linguistic reasons for this ‘copying’

behaviour, it is nevertheless a feature of the task which therefore allows this question

to be investigated.

The second question of whether errors are decreased by the auxiliary task of part-of-

speech tagging is related to another feature of the performance of Lematus, that of the

lower performance on ambiguous tokens, for example the many cases where lemma-

tization rules are mistakenly applied to ambiguous nouns whose wordform could also

be used as a verb. It is therefore related to Caruna (1993)’s statement that the aux-

iliary task may provide training signal for the main task, although in this case in a
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more nuanced way by potentially providing information about the part-of-speech of

the input.

Both of these research questions thus comprise two parts, whether the behaviour oc-

curs and whether this behaviour leads to the hypothesized increase in accuracy of the

model. By proxy, the effect of the ratio of the main task to auxiliary task will also be

investigated as well as that of the effect of original dataset size, which forms the third

research question. The effect of the distribution of target tags in the auxiliary task will

also be observed in this specific setting, however there is not a large variance in the

distribution of POS tags between languages in comparison to the variance in distribu-

tion of labels between tasks such as POS tagging and Named Entity Recognition and

so this is not a main motivating factor of the investigation.

Finally, after the proposal and motivations for this project were formed, Subramanian

et al. (2018) reported improved sentence representations using an almost identical one-

to-many multi-task learning setup using one encoder with multiple decoders, conclud-

ing that future work would be directed towards understanding the specific inductive

biases provided by the auxiliary tasks. Thus, this work also extends the work of Subra-

manian et al. (2018) by investigating some hypothesized biases, although for character

level sequences.





Chapter 3

Methodology and Implementation

3.1 Multi-Task Learning with Lematus

The encoder-decoder architecture as implemented by Nematus (Sennrich et al., 2017)

and adapted to the task of lemmatization for Lematus (Bergmanis and Goldwater,

2018) was extended to the one-to-many architecture as depicted in Figure 3.1. The

implementation of these models is discussed in Section 3.5.

Encoder

Auxiliary
Decoder  

- 
Auto-

Encoder 

Main 
Decoder 

- 
Lemmatizer 

Input
Sequence 

 (r a n) 

Copied 
Input

Sequence 
(r a n) 

Lemma 
(r u n) 

Figure 3.1: Multi-Task Lematus with the auxiliary task of auto-encoding

35



36 Chapter 3. Methodology and Implementation

3.1.1 Training

Using a Tensorflow (Abadi et al., 2016) implementation of this architecture, there are

two obvious ways to train the model. The first is to alternate between training decoders

for a given batch of inputs at some predefined rate. Therefore for each batch only one

task is trained.

Figure 3.2: Batch of input sequences propogated through the model

Figure 3.3: Backpropogating error for a batch training the main task
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Figure 3.4: Backpropogating error for a batch training the auxiliary task

As outlined in Figure 3.2 a batch of inputs is first propogated through the model. Then

the error from either the main or auxiliary decoder for that batch is backpropogated

through their respective decoders and the rest of the model as depicted in Figures 3.3

and 3.4 respectively. This method is referred to as ‘Alternating Training’ from this

point onwards where ‘Alternating Training 10:1’ means training with a 10:1 ratio of

batches training the main task versus the auxiliary task.

The second method is to add both errors weighted by a factor of a 2 [0,1], where

errormain is the error from the main task and erroraux is the error from the auxiliary

task:

Total Error = a · errormain +(1�a) · erroraux

This error is then backpropogated through the model, as shown in Figures 3.5and 3.6.

This is similar to Alternating Training with the weighted error contributed by the spe-

cific parts of the model backpropogated with a 1:1 ratio of main task to auxiliary task.
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Figure 3.5: Batch of input sequences propogated through the model

Figure 3.6: Error from batch of input sequences backpropogated through the model

As previous results in favour of MTL have favoured alternating training with smaller

ratios of auxiliary task to main task, alternating training is expected to outperform

this type of training. Specifically alternating training with a 10:1 ratio of main task

to auxiliary task is expected to outperform the other types of training, as this is the

training setup examined in this report with the lowest proportion of auxiliary task in

comparison to main task training.
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3.2 Datasets

The datasets used were those of the Universal Dependencies Project V2 (Nivre et al.,

2017) which consist of corpora of treebanks for over 60 languages and provide sen-

tences annotated with both lemmas and POS tags.

Due to time constraints, only 6 languages were chosen for experimentation. In or-

der to make the performance more comparable across languages given the different

dataset sizes available for each, the dataset sizes were restricted to 10,000 training to-

kens, 8,000 validation tokens and 8,000 test tokens. This is referred to as the ‘medium

resource setting’. A ‘low resource setting’ was also investigated with 1000 training

tokens, 800 validation tokens and 800 test tokens. The 6 languages were chosen to

vary by 3 properties, as demonstrated in Figures 3.7 and 3.8.

1. The amount of copying behaviour demonstrated in the training data, namely the

% of training examples where the input word equalled the desired output lemma.

This property is related to the morphological complexity of the language as

highly morphologically complex languages generally have many inflected forms

of a given base form, with additional suffixes, prefixes and circumfixes denoting

case, tense, gender, number, voice markers etc...

Figure 3.7: Percentage of training cases where the input inflected word is identical to

the desired output lemma, calculated from 10,000 training tokens
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2. The distribution of Part-of-Speech tags, for example languages such as Hindi

which contained almost 20% prepositions/postpositions in comparison to lan-

guages such as Hungarian with only 2% of the same.

Figure 3.8: ADJ (adjective), ADP (preposition/postposition), ADV (adverb), CCONJ (co-

ordinating conjunction), DET (determiner), NOUN (noun),PRON (pronoun), PROPN

(proper noun), VERB (verb)

3. Agglutinative versus fusional languages. Agglutinative languages such as Hun-

garian and Turkish form words by combining mostly unchanged morphemes

whereas fusional languages such as English, French, Hindi and Croatian may

have changes at the boundaries of combined morphemes. This may have an ef-

fect on the difficulty of the task. For example in the fusional language of English

‘changing’ is lemmatized by removing ‘ing’ and appending an ‘e’ to become

‘change’ and similarly ‘dating’ is lemmatized to ‘date’ whereas ‘salting’ is not

lemmatized to ‘salte’ but instead to ‘salt’.

The reported results are split into overall, unseen and ambiguous token statistics. Un-

seen input tokens in the validation set are those which were not seen in the training

set.

Obtaining representative counts of ambiguous tokens was more challenging than that

of unseen tokens. For example, if ambiguity is defined as an input which appears with

more than one target lemma in the training data (Bergmanis and Goldwater, 2018), this

raises the issue of cases such as l’ in French which appears with two different lemmas
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Language
Types

(10k train)

% Unseen Tokens

(8k dev)

% Amb. Tokens

(8k dev)

English 3994 26.65% 1.24%

French 5465 28.38% 19.93%

Croatian 6263 39.23% 5.16%

Hungarian 7340 43.38% 15.39%

Turkish 8525 42.50% 1.53%

Hindi 3967 31.10% 11.81%

Table 3.1: Statistics calculated using the 10,000 training set tokens and 8,000 validation

set tokens. Tokens are input words, types are the set of unique input words e.g. {‘Cat’,

‘Dog’, ‘Cat’} has 3 tokens and 2 types.

in the training data

l’ ! le (225/232 occurrences)
l’ ! l’ (7/232 occurrences)

These are not inherently different lemmas, they instead represent a potential misun-

derstanding by an annotator. This is different than inputs such as the French word fait

which is either an inflected form of the verb faire (to do) or a noun meaning a fact and

therefore correctly lemmatized to either faire or fait respectively.

fait ! faire (14/19 occurrences)
fait ! fait (5/19 occurrences)

The question of if a model can correctly lemmatize ambiguous inputs could therefore

be split into two categories: those potentially ambiguous from the model’s perspective

due to a small percentage of disagreement (or errors) in the training data, and those

which are ambiguous with respect to meaning and therefore have more than one cor-

rect lemma depending on the context which the input appears in. In total from 1593

ambiguous tokens in the 8000 validation set tokens for French, approximately 1531

(96%) are the first case and 62 are the second case, calculated by manually identifying

the number of each case for each type within the ambiguous tokens (there were only

32 types from 1593 tokens. 30% of the tokens were either la, le or l’).

Despite this issue, ambiguous tokens are reported based on those which occur with

more than one lemma in the training data regardless of the reason for this occurrence

in order to make results comparable to those of Bergmanis and Goldwater (2018).
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Where relevant the different cases are discussed.

3.2.1 Pre-Processing

Following Bergmanis and Goldwater (2018), each inflected word was extracted with a

context window of 20 characters and markers were added indicating the beginning and

end of the input phrase or output word, the start of a new word, the end of the context

characters to the left of the target word and the beginning of the context characters to

the right of the target word, as discussed in Section 2.2.2. For the auxiliary task of

POS tagging the beginning and end of POS tags were marked by <pos> and < \pos>

respectively. The characters of the word were separated by a space and examples

containing numerical digits 0-9 and hyphens or backslashes were removed. The input

was therefore of the format:

<w> t h e <s> l i n k e d <s> a r t i c l e <s> <lc> c o m m i t s <rc>
<s> j u s t <s> a b o u t <s> e v e r y <s> s </w>

with the lemmatization target of:

<w> c o m m i t </w>

and POS tag target of:

<pos> V E R B </pos>

No other pre-processing was done in order to have datasets which were as comparable

as possible to that of Bergmanis and Goldwater (2018)

3.3 Evaluation

Following Bergmanis and Goldwater (2018), evaluation is made on exact match lemma-

tization accuracy where only predicted lemmas which are identical to the target lemma

are counted as correct. An alternative measure of accuracy would be using a distance

metric such as Levenstein distance however this could conceivably favour models with

all predictions close to correct (for example with many predictions including an ‘s’

which should have been removed) over models with mostly perfectly correct lemmas

and otherwise significantly incorrect lemmas. It is not clear which would be preferable

for the ultimate downstream use of lemmatizers, therefore the less complex measure
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of exact match accuracy was used. A potential extension of the analysis included here

would be to also analyse the incorrect predictions using a distance metric and take

these figures into account as well.

Results are split into overall, seen, unseen and ambiguous tokens. Seen tokens are

those input tokens in the validation set which were present in the training set. Similarly,

unseen tokens are those input tokens in the validation set which were not present in the

training set. As previously discussed, ambiguous tokens are those input tokens which

occur with more than one lemma in the training data.

The performance of the model on unseen tokens is of particular interest as the main

purpose of models of lemmatization which are not dictionary based is ultimately to

deal with out-of-vocabulary words. Ambiguous tokens are seen during training by

definition but are also of interest as they more clearly necessitate knowledge beyond

that of a dictionary.

3.4 Baseline Models

Three baselines were considered:

1. Baseline 1: Copy the input. This is arguably not a model of lemmatization at

all, however it gives an indication of how much more a model of lemmatization

is learning over this simple rule

2. Baseline 2: Most Frequent Lemma. If the input was seen during training, output

the most frequently seen lemma. If the input was not seen during training, copy

it as the lemma.

3. Baseline 3: Lematus (Bergmanis and Goldwater, 2018)

Baselines 1 and 2 are intended as an indication of the difficulty of the task, they provide

a ‘sanity check’ as the models take seconds to ‘train’ (e.g. building the dictionary) and

run as opposed to the hours needed to train a neural model for the same amount of data.

The results of Baselines 1 and 2 are constant, the results of Baseline 2 were averaged

over 3 training runs. All other results for neural models reported are also averaged over

3 training runs.

Figures 3.9 to 3.12 show the differences in performance between the baselines.
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Figure 3.9: Overall Validation Accuracy

Figure 3.10: Seen Validation Accuracy

Figure 3.11: Unseen Validation Accuracy

Figure 3.12: Ambiguous Validation Accuracy
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Notably, Baseline 2 performs very well for English, Hindi and French. Most of the

performance gain in overall accuracy of Lematus over Baseline 2 is for unseen and

ambiguous tokens. Surprisingly, Baseline 2 outperforms Lematus on seen inputs for

some languages such as Hungarian.

There was a clear dip in performance across all languages between seen accuracy and

unseen accuracy for both Baseline 2 and Lematus. For example, English accuracy

for Baseline 2 falls from 98.76% for seen inputs to 78.10% for unseen inputs. For

the baseline model of Lematus English accuracy falls from 97.13% for seen inputs to

88.31% for unseen inputs.

When examining the performance of Lematus more closely, there were some notable

patterns:

1. Unseen accuracy is consistently lower than ambiguous, overall or seen accuracy.

2. Many errors with respect to overall accuracy involved inputs where the lemma

should equal the input, as demonstrated in Figures 3.14 and 3.13.

(a) English (b) French

(c) Turkish (d) Croatian
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(e) Hungarian (f) Hindi

Figure 3.13: Confusion Matrices for Overall Copying Behavior in Lematus

Figure 3.14: Percentage of incorrectly predicted unseen tokens which should have been

copied but were not

3. For all languages, except Turkish and Hungarian, there is a higher level of unseen

inputs which should have been copied but were not than vice versa (Figure 3.15).

4. For languages such as Turkish, Hungarian, English and Croatian there is a much

higher proportion of seen inputs copied than unseen inputs ( Table 3.2).
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Language Train Size Overall Copied Seen Copied Unseen Copied

English 10k 81.98% 85.13% 73.31%

1k 79.87% 87.05% 71.32%

Turkish 10k 46.80% 63.06% 24.80%

1k 49.58% 80.47% 37.35%

French 10k 66.25% 66.76% 64.99%

1k 60.17% 67.38% 52.27%

Hungarian 10k 67.04% 83.62% 38.24%

1k 60.71% 92.86% 43.40%

Croatian 10k 42.02% 50.76% 28.77%

1k 35.63% 52.07% 25.44%

Hindi 10k 71.44% 68.12% 78.79%

1k 50.54% 67.66% 30.04%

Table 3.2: Copying Behaviour in Baseline Lematus

(a) English (b) French

(c) Turkish (d) Croatian
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(e) Hungarian (f) Hindi

Figure 3.15: Confusion Matrices for Unseen Copying Behavior in Lematus

5. As previously discussed by Bergmanis and Goldwater (2018), there is a clear re-

lationship between the percentage of unseen tokens for a given language, which

is a measure of how morphologically productive that language is (Bergmanis and

Goldwater, 2018) and therefore can act as a measure of morphological complex-

ity, and the performance of the Lematus baseline as demonstrated in Figure 3.16.

Lematus appears to perform best for languages which are not morphologically

complex as measured in this way. Increasing accuracy for unseen tokens would

therefore improve performance for morphologically complex languages.

Figure 3.16: Percentage of unseen tokens versus overall validation accuracy

6. Our error analysis of English output for Lematus indicated that common rules for
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de-inflecting verbs (such as removing ‘ed’) are sometimes erroneously applied

to nouns which end in a common suffix. For example, the English baseline

Lematus model appears unsure of whether or not to de-inflect ‘Mohammed’ to

‘Mohamm’. Between 3 training runs of the Lematus baseline, two models chose

‘Mohamm’ while the third output ‘Mohammed’. Knowledge that ‘Mohammed’

is a noun, not a verb, would indicate that de-inflecting ‘ed’ is inappropriate, or

from the perspective of the model, that it is statistically unlikely.

Examining the probabilities associated with these decisions, as shown in Table

3.3, demonstrates that up until ‘Mohamm’ the probability for each of the charac-

ters output is above 96% for each training run, meaning that the model believes

that there is a 96% probability or greater that the character in question is the

correct one. After that point the models begin to differ. One model favours

continuing to output ‘e’ with a probability of 84% while another favours ending

the word with probability 86% (or continuing to ‘e’ with probability 13%). The

third model has a probability of 69% of ending the word and 29% of continuing

to ‘e’. Apparently, there is not enough information in the training data for the

model to reliably learn what to do in this situation.

Output Run 1 Output Run 2 Output Run 3
<w> 100% <w> 100% <w> 99.99%

M 97.36% M 96.32% M 97.21%

o 98.97% o 99.61% o 99.34%

h 99.97% h 99.97% h 99.93%

a 99.99% a 99.98% a 99.99%

m 99.89% m 99.94% m 99.89%

m 99.78% m 99.94% m 99.89%

<\w> 69.05% <\w> 86.55% e 83.47%

d 99.50%

<\w> 99.99%

Table 3.3: Probability of outputting the given output symbol for each training run of the

baseline Lematus model

7. Examining example outputs of the baseline Lematus model for French verbs,

there were two further types of error made. The first was when the verb was
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incorrectly de-inflected. For example changing the input ‘croyait’ to ‘croyer in-

stead of the correct ‘croire’. Deleting ‘ait’ and appending ‘er’ is a common trans-

formation between inflected wordform and lemma for regular verbs in French,

however ‘croire’ is an irregular verb. Some other examples of attempted but

ultimately incorrect de-inflections made by the baseline Lematus model were:

‘couvrent’ ! ‘couvre’ (instead of ‘couvrir’)
‘fallait’ ! ‘faller’ (instead of ‘falloir’)

‘suivirent’ ! ‘suivirer’ (instead of ‘suivre’)

8. The other common type of error with respect to verbs would appear to be the

inverse of the case discussed for nouns previously, which is when no apparent

attempt is made by the model to de-inflect the input at all, perhaps indicating a

lack of awareness that the input is a verb. For example:

‘donne’ ! ‘donne’ (instead of ‘donner’)
‘serrent’ ! ‘serrent’ (instead of ‘serrer’)

‘explora’ ! ‘explora’ (instead of ‘explorer’)

This is despite similar transformations being correctly done by the baseline

Lematus model for many other verbs, including:

‘reste’ ! ‘rester’
‘adressent’ ! ‘adresser’

‘adopta’ ! ‘adopter’

9. The above are all observations made when the models were trained with 10,000

training tokens, in the low resource setting with only 1000 training tokens the

patterns in errors above are less common although there are still some examples

of both. Instead, there were some other types of common errors. Firstly the

baseline Lematus models make many mistakes with consonants, for example the

French baseline model outputs the following:

‘film’ ! ‘fily’
‘zone’ ! ‘jone’
‘cot’ ! ‘coyt’

10. The second type of frequent error in the low resource setting occurs when the

model predicts a common lemma seen during training, instead of something

related to the input wordform. For example the French baseline model frequently

predicts ‘être’, which is one of the most common verbs in French, for seemingly

random input words:

‘etape’ ! ‘être’
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‘kerr’ ! ‘être’
‘zones’ ! ‘être’

The observations made about the behaviour of Lematus above therefore empirically

motivate both the use of auto-encoding and POS tagging as auxiliary tasks. In the

medium resource setting it is possible that auto-encoding could correct some of the

errors discussed in points 2, 3 and 4 above, while errors of the types discussed in

points 6, 7 and 8 could be helped by knowledge of the POS tag of the input word. In

the low resource setting a bias towards auto-encoding the input could help to correct

both types of errors discussed.

3.5 Practical Details

3.5.1 Implementation and Experiment Setup

An implementation of Nematus is available via Github (Sennrich et al., 2017) and was

used as the basis for this project. The training setup used originally for Lematus was

generously provided by the authors (Bergmanis and Goldwater, 2018), although they

originally used the Theano (Al-Rfou et al., 2016) implementation of Nematus 1 which

is no longer supported. This work extends the current Tensorflow version2 instead.

Models were trained using NVIDIA 1060 GTX 6GB GPUs and due to the variation

in training runs each model was retrained 3 times. It would have been preferable to

retrain models more than 3 times, however this was not possible due to the availability

of both time and access to shared resources.

There are 3 variations of each of the two training setups (Section 3.1) investigated as it

was not immediately clear what an appropriate training setup would be in terms of the

ratio of auxiliary to main task training:

• Alternating 10:1 Alternating training as discussed in Section 3.1.1 with a 10:1

ratio of batches used to train the main task in comparison to the auxiliary task

• Alternating 2:1 As above with a 2:1 ratio of batches used to train the main task

in comparison to the auxiliary task

1https://github.com/EdinburghNLP/nematus/tree/theano
2https://github.com/EdinburghNLP/nematus
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• Alternating 1:1 As above with and equal split of batches used to train the main

task and the auxiliary task

• Joint 0.2 Joint training as outlined in Section 3.1.1 with a = 0.2

• Joint 0.5 As above with a = 0.5

• Joint 0.8 As above with a = 0.8

Each auxiliary task was therefore investigated for 6 languages and two dataset sizes

(Section 3.2) using these MTL training settings. This allows the hypothesized effects

of the respective auxiliary tasks to be observed for different languages and dataset

sizes, therefore giving an indication of to what extent the conclusions are generally

applicable across languages and resource levels.

3.5.2 Hyperparameter Settings

The hyperparameter settings used by Lematus were not intentionally altered for any

of the models, however some changes were necessitated due to functionality not yet

being available in the Tensorflow version at the time of beginning this work:

1. The gradient descent method Adam (Kingma and Ba, 2014) was used instead of

AdaDelta (Zeiler, 2012)

2. Validation error was used as the early stopping criteria as opposed to validation

accuracy

3. Weight normalization (Salimans and Kingma, 2016) was not supported

As 4 of the 6 languages overlap with the results reported by Bergmanis and Goldwater

(2018) and the obtained baseline results using this setup are similar to those results,

time was not spent extending the implementation to include these features.

The following hyperparameters were found to have good performance across lan-

guages by Bergmanis and Goldwater (2018) and were not changed for any model dis-

cussed in this report in order to allow for a direct comparison of the effects of MTL

without the results being confused by differences caused by hyperparameter tuning in

this way. This follows a similar approach used in related work such as that of Bingel

and Søgaard (2017) and Alonso and Plank (2016). Ideally, given enough time and

resources, it may have been preferable to instead tune the hyperparameters for every
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model and therefore compare each model’s best possible performance. This would

give a more comprehensive idea of which model would ultimately have the best per-

formance for use in real-world applications however is impractical for this work as it

is both time and resource intensive. There would undoubtably be performance gains if

the model were tuned further for specific languages.

• Word Embedding Dimension: 300

• Hidden State Dimension: 100

• Layers in Encoder: 2

• Layers in Decoder: 2

• Early Stopping with patience 10

• Batch Size: 60

• Optimizer: Adam

• Learning Rate: 0.0001

• Validation Burn In: 10 epochs

• Validation Frequency: 10 epochs

• Maximum output length: 75 characters

• Dropout (Gal and Ghahramani, 2016) 0.2

• Loss Function: Cross-Entropy Loss

• Activation: Tanh

• Beam Search with a beam size of 12





Chapter 4

Results Part 1: Auto-Encoding and

Copying

There are three key questions to be answered by these results:

1. Does MTL with the auxiliary task of auto-encoding improve the performance of

Lematus as hypothesized?

2. Does MTL with the auxiliary task of auto-encoding bias the model towards re-

turning the input wordform as the output lemma (copying), therefore benefiting

languages exhibiting a higher number of lemmas being equal to their inflected

wordform?

3. Are these conclusions different in a low-resource setting?

4.1 Accuracy in the Medium Resource Setting

Initially, exact-match accuracy was considered for overall, seen, unseen and ambiguous

tokens by averaging the performance of each model over 3 training runs with 10,000

training examples, as discussed in more detail in Chapter 3. As demonstrated in Table

4.4, for each language the best overall and unseen accuracies were obtained by a MTL

model, although in some cases by a small margin. In many cases there is a larger im-

provement in unseen than seen accuracy, for example a 1.57% improvement in unseen

accuracy for Hungarian in comparison to a 0.5% improvement in seen accuracy.

55
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Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 94.77% 93.34% 85.40% 91.57% 89.21% 93.95%

Best MTL Model 95.78% 93.38% 85.65% 92.38% 90.12% 94.77%

Improvement +1.01% +0.04% +0.25% +0.81% +0.91% +0.82%

Table 4.1: (Auxiliary Task: Auto-Encoding) Average Overall Validation Accuracy figures.

The ’Best MTL Model’ is the MTL model with the best overall accuracy from the 6

variations of training setup described in Section 3.5.1

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 97.13% 97.67% 95.53% 97.62% 96.96% 96.78%

Best MTL Model 98.54% 97.67% 95.77% 98.19% 97.57% 97.64%

Improvement +1.41% - +0.24% +0.5% +0.61% +0.86%

Table 4.2: (Auxiliary Task: Auto-Encoding) Average Seen Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 88.26% 82.36% 69.69% 83.65% 78.71% 87.64%

Best MTL Model 88.41% 82.64% 70.30% 85.22% 80.04% 88.41%

Improvement +0.15% +0.28% +0.61% +1.57% +1.33% +0.77%

Table 4.3: (Auxiliary Task: Auto-Encoding) Average Unseen Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 63.27% 97.59% 90.94% 99.30% 75.76% 86.93%

Best MTL Model 79.59% 97.91% 91.91% 99.43% 69.42% 89.80%

Improvement +16.32% +0.31% +0.97% +0.13% -6.32% +2.97%

Table 4.4: (Auxiliary Task: Auto-Encoding) Average Ambiguous Validation Accuracy

figures

The largest changes for languages such as English and Turkish are for ambiguous ac-

curacies, however the amount of ambiguous tokens in the languages with considerable

changes is relatively low. For example English and Turkish both have less than 1.6%

(160) ambiguous tokens. In terms of overall accuracy MTL appears to improve perfor-

mance for English, Hungarian, Turkish and Hindi. However, this result is weakened

by the fact that trying 6 variations of MTL, as outlined in Section 3.5.1, in comparison
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to one version of the baseline Lematus model is affording a level hyperparamter tuning

(of the proportion of auxiliary task training to main task training) to the MTL models

which is not offered to the baseline. Considering the accuracies of all of the MTL

models in Figure 4.1 gives a more comprehensive review.

Figure 4.1: Overall Validation accuracies for 10,000 training examples with the auxiliary

task of auto-encoding. Alternate 1:1 represents alternating training with a 1:1 ratio of

main task : auxiliary task, as discussed in Chapter 3. Similarly, Joint 0.50 represents

joint training with a = 0.5. The vertical lines represent ± 1 standard deviation.
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For Hungarian and Hindi there is a clear improvement in performance. Croatian ap-

pears unchanged, particularly when the standard deviations are taken into account.

English and Turkish have varied results, with one specific MTL model significantly

outperforming all others. In contrast, the French lemmatization model appears to be

made worse by the addition of auto-encoding as an auxiliary task. Similar plots for

seen and ambiguous tokens are included in Appendix B.

Considering the at times substantial standard deviations in these results, which equate

to different outputs for a given input across different training runs of the same model,

accuracies were also considered when an ensemble of the three training runs for each

model was compared instead of the average performance across those three training

runs. Given three training runs for each model, an ensemble output was obtained for a

given input as follows:

1. If two or more training runs agreed on an output, then this output was used.

2. If all three training runs disagreed, one of their outputs was chosen at random.

3. The performance for the ensemble for a model was then averaged over 100 runs

of that ensemble in order to account for the random element introduced in 2.

The conclusions from these results are largely the same. Appendix C contains an

example of the accuracies from the ensemble, however the remainder were excluded

for the sake of brevity as the conclusions reached were the same as those of average

accuracies for all of the results outlined in this document.

Overall auto-encoding appears to benefit some languages but not all languages, often

by margins of around 1% or less. There is no obvious link between the characteristics

of these languages as discussed in Chapter 3 and the magnitude of these improvements.

For example the fact that French performance did not improve indicates that languages

with a higher proportion of lemmas equal to inflected wordforms in the training data

(Figure 3.7) do not necessarily improve more. For languages such as Turkish and Hun-

garian much of this improvement is for unseen tokens while in English, Croatian and

Hindi there is a clear improvement for ambiguous tokens. English and Hindi also have

improved performance for seen tokens, however this is less impressive when the per-

formance of Baseline 2, which chooses the most frequent lemma seen during training

for seen inputs and simply copies unseen inputs, is considered (Chapter 3). The only

language which has any neural model of lemmatization which improves performance

for seen tokens above that of Baseline 2 is Hindi. Therefore, similarly to the fact that
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the main benefit over the baselines for Lematus is with respect to unseen and ambigu-

ous tokens, the valuable improvements in this case over Lematus are with respect to

unseen and ambiguous tokens.

4.2 Copying in the Medium Resource Setting

Figure 4.2: Copying Behaviour: Overall % of (input wordform = predicted lemma) with

10,000 training examples for the auxiliary task of auto-encoding. See Figure 4.1 for

more details about the plot layout
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As discussed previously, Caruna (1993) indicated that MTL may influence models to

choose outputs and/or representations which benefited both tasks. In this case does

this translate to more input wordforms being copied (with the output predicted lemma

being equal to the input wordform)?

The results reported in Figure 4.2 clearly show that the auxiliary task of auto-encoding

does not systematically increase the number of input wordforms directly copied as

the output lemma. For both Croatian and Hindi there is a clear decrease in copying

behaviour. This is also true for unseen tokens (see Appendix B) which in general have

a much lower rate of copying than seen tokens across all neural models implemented.

For example all Turkish models of lemmatization copy around 66% of seen tokens but

only 25% of unseen tokens.

Figure 4.3: Overall Validation accuracies vs % Inputs Words equal to Output Lemma

for 10,000 training examples
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Instead, as demonstrated for overall tokens in Figure 4.3, there is evidence that the

hypothesis that increasing overall string copying in this way might increase accuracy

was incorrect for many languages.

4.3 Accuracy in the Low Resource Setting

The low resource setting uses the first 1000 training examples and the first 800 vali-

dation examples. Similarly to the medium resource setting, the conclusions varied by

language.

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 87.04% 77.25% 61.58% 74.37% 67.42% 64.79%

Best MTL Model 88.79% 77.88% 66.29% 74.04% 73.12% 75.25%

Improvement +1.75% +0.63% +4.71% -0.33% +5.7% +10.46%

Table 4.5: (Auxiliary Task: Auto-Encoding) Average Overall Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 98.54% 97.45% 96.30% 99.40% 92.66% 90.83%

Best MTL Model 98.24% 97.69% 97.82% 99.40% 95.15% 95.49%

Improvement -0.30% +0.24% +1.52% - +2.49% +4.66%

Table 4.6: Auxiliary Task: Auto-Encoding) Average Seen Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 73.33% 55.15% 40.08% 60.90% 57.42% 33.61%

Best MTL Model 77.81% 57.59% 46.76% 60.64% 64.63% 51.01%

Improvement +4.48% +2.44% +6.68% -0.26% +7.21% +17.40%

Table 4.7: Auxiliary Task: Auto-Encoding) Average Unseen Validation Accuracy figures

As shown in Table 4.5 and Figure 4.4, the overall accuracies of Croatian, Turkish and

Hindi improved by considerable margins of between 4.7% and 10.5%, with most of

this improvement caused by better performance for unseen tokens. The results were
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less impressive for English and French, although again the majority of the improve-

ment was in the unseen case for these languages. Hungarian is made worse by the

addition of the auxiliary task of auto-encoding in the low resource setting, although

this decrease was small. These conclusions were again similar when the training runs

were ensembled (Appendix C). No ambiguous figures were included in the low re-

source setting as the numbers were too low to provide a reliable estimate.

Figure 4.4: Overall Validation accuracies for 1000 training examples with the auxiliary

task of auto-encoding. See Figure 4.1 for further details about the plot layout
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The improvements obtained in the low resource setting are noticeably larger than that

of the medium resource setting. For example, the best MTL model for Hindi in the

low resource setting reduced the errors made by the baseline model by 29.7% in com-

parison to a 13.5% reduction in errors in the medium resource setting. However the

standard deviations of the average accuracies for both Turkish and Hindi are quite

large, as are those of many other models in this setting, implying that the models are

quite unstable. This instability somewhat weakens these results as it could reasonably

be the case that many of the changes are due to random differences in performance as

opposed to systematic improvement due to some underlying trend.

4.4 Copying in the Low Resource Setting

Except for Hindi, there is no clear evidence of increased copying behaviour in the low

resource setting, as demonstrated in Figure 4.5.

In contrast to the medium resource setting, there is a strong relationship between in-

creased copying and improved accuracy scores for some of the languages. As shown

in Figure 4.6 for English, French and Hindi more copying implies better performance.

However, this is not true to the same extent for Hungarian, Turkish and Croatian and

it is unclear which is the causal effect. Is the level of copying increased therefore im-

proving accuracy or does improved accuracy for some other reason necessarily lead to

increased copying behaviour in this case?

There was no noticeable effect on the types of errors discussed in Section 3.4 for

French or English in the low resource setting. However 87% of the errors corrected by

the best Hindi multi-task model involved errors made when the baseline model did not

copy the input wordform as the lemma but should have and this was corrected by the

MTL model. The same trend was not evident for the other languages most improved

by the addition of the auxiliary task of auto-encoding, Turkish and Croatian.
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Figure 4.5: Overall % of input wordform = predicted lemma for models trained using

1000 training examples with the auxiliary task of auto-encoding. See Figure 4.1 for

further details about this plot layout
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Figure 4.6: Overall % improvement in validation accuracies of the MTL models over the

baseline Lematus model versus the % difference in copying with the auxiliary task of

auto-encoding

4.5 Research Question Review and Discussion

The following questions were posed at the beginning of this Chapter:

1. Does MTL with the auxiliary task of auto-encoding improve the performance of
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Lematus?

Whether or not the extension of Lematus to a MTL framework with the auxil-

iary task of auto-encoding improves performance appears to depend on both the

language and size of the training data.

2. Does MTL with the auxiliary task of auto-encoding bias the model towards copy-

ing the input, therefore benefiting languages exhibiting a higher level of lemmas

being equal to the inflected wordform more?

There is little convincing evidence that the auxiliary task of auto-encoding biases

the model towards copying. Specifically, the increases do not appear to be related

to the proportion of lemmas equal to their inflected wordform in the training data

for the language.

3. Are these conclusions different in a low-resource setting?

These conclusions are also true to an extent in the low resource setting. Although

some of the improvements in accuracy in this case are more substantial (up to

10%), there are also significantly higher differences in performance between dif-

ferent training runs for the same model. As could be expected, the low resource

models are less stable and therefore the results are somewhat less convincing.

For some languages in the low resource setting there is a clear relationship be-

tween this improvement in accuracy and increased levels of copying, in direct

contrast to the lack of relationship or negative relationship in the medium re-

source setting. The increased levels of copying were far from unanimous and

could either be due to the aforementioned variation in accuracy between train-

ing runs in the low resource setting causing a misleading trend, or could also

potentially be caused by the different resource settings simply being entirely dif-

ferent problems with respect to model training, with correspondingly different

behaviours when the auxiliary task of auto-encoding is added.

What is clear is that regardless of training set size, adding the auxiliary task of auto-

encoding does not reliably increase the level of copying, but despite this in many cases

it does still increase accuracy. Some further analysis of these results which is not

directly related to the research questions is included in Appendix D.
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4.6 Test Set Results

To date, conclusions about the auxiliary task of auto-encoding have been made using

a validation set which was also used to decide when to stop training each model. The

final step is to test these conclusions on a held-out test set, which has been ignored until

this point in order to avoid inadvertently tuning the models to this set. The results on

this test set are the therefore the best estimate of a each model’s ability to generalize

to new data. It is important to note in this case accuracy is calculated at the token

level. Although every input to the model is different due to the context characters

which surround it, many of the actual wordforms to be lemmatized are the same word

repeated (such as ‘the’ in English). This potentially explains why there is less of a drop

between validation and test set accuracy than is often found in other machine learning

results.

4.6.1 Medium Resource

In the medium resource setting the conclusions from the validation and test set re-

sults were very similar with improvements which range from very small for French

of around 0.15% to a more convincing 1.24% and 1.32% for English and Hungarian

respectively.

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 94.30% 92.02% 83.65% 88.91% 89.86% 93.95%

Best MTL Model 95.54% 92.17% 84.36% 90.23% 90.94% 94.60%

Improvement +1.24% +0.15% +0.71% +1.32% +1.08% +0.66%

Table 4.8: (Auxiliary Task: Auto-Encoding) Average Overall Test Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 96.70% 96.58% 94.72% 97.51% 96.75% 96.92%

Best MTL Model 98.38% 96.64% 95.31% 98.26% 97.54% 97.70%

Improvement +1.68% +0.06% +0.59% +0.75% +0.80% +0.78%

Table 4.9: (Auxiliary Task: Auto-Encoding) Average Seen Test Accuracy figures
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Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 87.94% 79.19% 68.69% 78.90% 80.59% 86.77%

Best MTL Model 88.52% 80.18% 69.77% 81.60% 82.06% 87.14%

Improvement +0.58% +0.99% +1.08% +2.70% +1.47% +0.37%

Table 4.10: (Auxiliary Task: Auto-Encoding) Average Unseen Test Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 72.22% 95.73% 87.36% 97.95% 75.00% 86.66%

Best MTL Model 80.37% 96.09% 88.65% 98.87% 71.13% 89.38%

Improvement +8.15% +0.35% +1.29% +0.91% -3.87% +2.72%

Table 4.11: (Auxiliary Task: Auto-Encoding) Average Ambiguous Test Accuracy figures

Similarly to the validation set results, French, Croatian, Hungarian and Turkish im-

proved more for unseen than seen tokens and there were some larger improvements

in ambiguous tokens, for example 8.15% for English. There was also no noticeable

change in copying behaviour for the test set, with the results similar to that of the

validation set.

4.6.2 Low Resource

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 85.42% 78.71% 61.67% 72.42% 66.54% 69.29%

Best MTL Model 86.96% 78.92% 66.12% 72.25% 72.50% 78.75%

Improvement +1.54% +0.21% +4.46% -0.17% +5.96% +9.46%

Table 4.12: (Auxiliary Task: Auto-Encoding) Average Overall Test Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 97.49% 95.29% 94.83% 97.61% 91.67% 88.65%

Best MTL Model 97.95% 94.93% 96.09% 98.24% 95.69% 93.22%

Improvement +0.46% -0.36% +1.26% +0.63% +4.02% +4.57%

Table 4.13: (Auxiliary Task: Auto-Encoding) Average Seen Test Accuracy figures
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Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 70.73% 56.27% 42.81% 59.94% 56.28% 47.57%

Best MTL Model 74.15% 57.25% 49.80% 60.00% 63.03% 65.43%

Improvement +3.42% +0.98% +6.99% +0.06% +6.75% +17.86%

Table 4.14: (Auxiliary Task: Auto-Encoding) Average Unseen Test Accuracy figures

In the low resource setting the test set results are again similar to validation set results.

Although all improvements except for Turkish are slightly lower, the same languages

benefit the most (Hindi, Turkish and Croatian) and the same languages benefit very

little or not at all (French and Hungarian).

The trend remains that the most improvement for those languages which did improve

is for unseen tokens, although that gap is narrower for Turkish than it was with the

validation set. The trends in copying behaviour for the test set in the low resource

setting are also very similar to that of the validation set.

Therefore the test set results confirm the findings that for specific languages and train-

ing set sizes, the auxiliary task of auto-encoding improves overall accuracy but does

not show convincing evidence of increasing the number of inputs copied as the output

in general.





Chapter 5

Results Part 2: Part-of-Speech

Tagging and Ambiguity

The three key questions to be answered by these results are:

1. Does MTL with the auxiliary task of part-of-speech tagging improve the perfor-

mance of Lematus?

2. Does MTL with the auxiliary task of POS tagging improve performance for spe-

cific POS tags and/or ambiguous tokens therefore indicating increased knowl-

edge of the POS tag of the input wordform by the MTL model in comparison to

the baseline Lematus model?

3. Are these conclusions different in a low-resource setting?

5.1 Accuracy in the Medium Resource Setting

As in the previous chapter, the reported results are for exact match validation accuracy.

Tables 5.1 to 5.4 demonstrate that in each case, the best MTL model outperformed the

baseline Lematus model in terms of overall validation accuracy by margins of between

0.83% and 2.25% and by between 0.39% and 3.34% for unseen accuracy. The type of

performance which improved most depended on the language, for example for English

and Turkish there was a greater percentage increase in ambiguous accuracy, however

this is less impressive when the amount of ambiguous tokens for these languages is

considered. For French, Hungarian, Croatian and Turkish the largest percentage im-
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provement was for unseen inputs, with Hungarian unseen accuracy improving by an

impressive 3.34%.

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 94.77% 93.34% 85.40% 91.57% 89.21% 93.95%

Best MTL Model 96.28% 94.65% 86.38% 93.82% 90.92% 94.78%

Improvement +1.51% +1.31% +0.97% +2.25% +1.70% +0.83%

Table 5.1: (Auxiliary Task: POS Tagging) Average Overall Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 97.13% 97.67% 95.53% 97.62% 96.96% 96.78%

Best MTL Model 99.06% 98.52% 96.39% 99.04% 98.23% 97.88%

Improvement +1.93% +0.85% +0.86% +1.42% +1.28% +1.11%

Table 5.2: (Auxiliary Task: POS Tagging) Average Seen Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 88.31% 82.39% 69.72% 83.67% 78.74% 87.67%

Best MTL Model 88.70% 84.88% 70.86% 87.01% 81.09% 88.65%

Improvement +0.39% +2.48% +1.15% +3.34% +2.35% +0.98%

Table 5.3: (Auxiliary Task: POS Tagging) Average Unseen Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 63.27% 97.59% 90.94% 99.30% 75.76% 86.94%

Best MTL Model 89.80% 97.91% 91.59% 99.49% 76.86% 90.25%

Improvement +26.53% +0.31% +0.65% +0.19% +1.10% +3.32%

Table 5.4: (Auxiliary Task: POS Tagging) Average Ambiguous Validation Accuracy fig-

ures

Similarly to the previous chapter, these promising results are somewhat undermined

by the fact that a degree of hyperparameter tuning (with respect to the proportion of

auxiliary to main task training) was afforded to the MTL models for each language
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which was not also available to the baseline. Therefore, Figure 5.2 instead shows the

performance for all MTL models for each language in comparison to the baseline.

Figure 5.1: Overall validation accuracies for 10000 training examples with the auxiliary

task of POS tagging

Interestingly, in this case there is a clear ‘best MTL model’ with respect to overall

accuracy. The MTL model which used alternating training with a 10:1 ratio of training

the main task to the auxiliary task was the best performing model for every language.
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This result agrees with the findings of Luong et al. (2015) that MTL works best with

a small ratio of auxiliary task training, as discussed in Section 2.3. Each joint model

appears to have similar performance to the 1:1 alternating training model, which was

always the worst performing of the alternating models.

5.2 Ambiguity in the Medium Resource Setting

As discussed previously in Section 3.4, the baseline Lematus model appears to struggle

with whether or not ‘Mohammed’ should be deinflected to ‘Mohamm’. Between 3

training runs of the Lematus baseline, two models output ’Mohamm’ and the third

output ‘Mohammed’ with probabilities of between 69% and 86% of either ending the

word or continuing from ‘Mohamm’ to ‘Mohammed’, as shown in Section 3.4. Does

this behaviour change with the addition of the auxiliary task of part-of-speech tagging?

Intuitively being aware in some way that ‘Mohammed’ was a noun should indicate that

it is very unlikely that ‘ed’ should be deleted.

Indeed, when the auxiliary task of POS tagging is added, every training run of the

Alternating 10:1 MTL model outputs ‘Mohammed’. More concretely, the probability

of outputting ‘e’ after ‘Mohamm’ is now always over 96%, with the next most probable

output being to end the word with a probability of only around 3% in each case.

Output Run 1 Output Run 2 Output Run 3
<w> 100% <w> 100% <w> 100%

M 99.90% M 99.87% M 99.74%

o 99.99% o 100% o 100%

h 100% h 100% h 100%

a 100% a 100% a 100%

m 100% m 100% m 100%

m 99.99% m 100% m 100%

e 96.80% e 96.83% e 96.62%

d 100% d 99.99% d 99.97%

<\w> 100% <\w> 100% <\w> 100%

Table 5.5: Probability of outputting the given output symbol for each training run of the

MTL Lematus model with Alternating 10:1 training and the auxiliary task of POS tagging



5.2. Ambiguity in the Medium Resource Setting 75

If this type of improvement is also reflected across other languages for similar rea-

sons then potentially accuracies for inputs with specific POS tags, such as nouns, will

improve for the MTL models in comparison to the baseline model. Observing the

breakdown of performance improvement by part-of-speech tag in Figure 5.2 neither

proves nor disproves this hypothesized reason for improved performance. For some

languages such as Turkish some of the largest improvements are for proper nouns and

nouns. However, there is also significant improvements in many languages for both

verbs and auxiliary verbs.

Figure 5.2: (Auxiliary Task: POS Tagging) Overall validation accuracies for 10000 train-

ing examples by tag

Another type of error identified in Section 3.4 was that of verbs being incorrectly dein-

flected, for example ‘couvrent’ becoming ‘couvre’ instead of ‘couvrir’ and‘suivirent’

becoming ‘suivirer’ instead of ‘suivre’ . The multi-task learning model seems to still

make errors, although often an entirely different error, in these cases:

‘couvrent’ ! ‘couvenir’
‘fallait’ ! ‘faller’

‘suivirent’ ! ‘suivir’

In contrast, the second type of error which occurs when the Lematus baseline doesn’t

attempt to de-inflect verbs, for example mapping ‘donne’ to ‘donne’ instead of ‘don-

ner’, does seem to be improved by the extension of the model to MTL with the aux-

iliary task of part-of-speech tagging trained using alternating 10:1 training (Section



76 Chapter 5. Results Part 2: Part-of-Speech Tagging and Ambiguity

3.5.1):

‘donne’ ! ‘donner’
‘serrent’ ! ‘serrer’

‘adopta’ ! ‘adopter’

An estimated 27% of errors for the baseline model for French were the second type of

error (when a verb was not de-inflected at all). Of these 45% were corrected by the

MTL model. In contrast, around 14% of the errors were of the first type (when a verb

was de-inflected to an incorrect de-inflection which would not be helped by knowledge

of the part-of-speech tag) and of these only 4% were corrected by the MTL model. For

English, an estimated 24% of errors for the baseline model were the second type of

error and 38% of these were corrected by the MTL model in comparison to 6% errors

of the first type of which only around 5% where corrected by the MTL model. These

improvements suggest that some form of knowledge of when to deinflect an input word

or not is being provided by the auxiliary task of part-of-speech tagging, potentially in

the form of increased knowledge of the tag for each input wordform.

5.3 Accuracy in the Low Resource Setting

In the low resource setting there was an improvement in overall accuracy for every

language except English. In each case this improvement is mostly associated with an

improvement in accuracy for unseen tokens. Similarly to the low resource results for

the auxiliary task of auto-encoding, many of the gains in accuracy in the low resource

setting were larger than those of the medium resource setting. Although in the medium

resource setting POS tagging unanimously improved overall validation accuracy more

than auto-encoding, the same is not true in the low resource setting. The performance

of the model for Hindi and Turkish in the low resource setting also improved more

with the auxiliary task of auto-encoding than POS tagging.

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 87.04% 77.25% 61.58% 74.37% 67.42% 64.79%

Best MTL Model 86.88% 79.50% 66.92% 75.75% 71.67% 72.46%

Improvement -0.17% +2.25% +5.33% +1.38% +4.25% +7.67%

Table 5.6: (Auxiliary Task: POS Tagging) Average Overall Validation Accuracy figures
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Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 98.54% 97.45% 96.30% 99.40% 92.66% 90.83%

Best MTL Model 98.54% 97.93% 97.82% 99.29% 95.74% 94.50%

Improvement 0.00% +0.48% +1.53% +-0.12% +3.08% +3.67%

Table 5.7: (Auxiliary Task: POS Tagging) Average Seen Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 73.33% 55.15% 40.08% 60.90% 57.42% 33.61%

Best MTL Model 72.97% 59.95% 47.91% 63.33% 63.35% 46.06%

Improvement -0.37% +4.80% +7.83% +2.44% +5.93% +12.45%

% Unseen Tokens 45.6% 47.8% 61.8% 65.0% 71.6% 45.5%

Table 5.8: (Auxiliary Task: POS Tagging) Average Unseen Validation Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 100.00% 96.94% 66.67% 0.00% 0.00% 51.39%

Best MTL Model 100.00% 96.60% 100.00% 0.00% 0.00% 63.89%

Improvement +0.00% -0.34% +33.33% +0.00% +0.00% +12.50%

Total Amb. Tokens 6 98 1 0 0 48

Table 5.9: (Auxiliary Task: POS Tagging) Average Ambiguous Validation Accuracy fig-

ures

In this setting, there appears to be little relationship between the percentage of unseen

tokens and the level of improvement. Similarly there is also not a clear relationship

between the percentage of unseen tokens present in the validation set and the overall

accuracy of the model despite the percentage of unseen tokens being a measure of the

morphological productivity (and therefore morphological complexity) of a language.

Baseline 2, which either outputs the most frequent lemma for previously seen inputs

or just copies the input wordform for unseen inputs, outperforms both the Lematus

Baseline and the best MTL model in the low resource setting for English, French and

Hindi.
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Figure 5.3: Overall validation accuracies for 10000 training examples with the auxiliary

task of POS tagging

Additionally, as demonstrated by Figure 5.3, the alternating models with a large pro-

portion of batches used to train the auxiliary task (for example 50% of batches for

the 1:1 Alternating model) perform very poorly. Clearly in the low resource setting

the wrong auxiliary task and wrong MTL model can cause a much larger dip in per-

formance. For example, the largest reduction in overall accuracy in the low resource
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setting for auto-encoding was around 8%. Here, the 1:1 Alternating model at times

lowers accuracy by almost 20%. Clearly the dataset size effects the most suitable aux-

iliary task, as in no case did a MTL model with the auxiliary task of auto-encoding

achieve such poor performance.

Interestingly, the same language are most improved by the addition of auto-encoding

and part-of-speech tagging in the low resource setting (Hindi, Turkish and Croatian).

As with all other results to date, these conclusions are also evident (with a lower level

of variation) when the training runs for each model are ensembled instead of averaged

(Appendix E).

5.4 Ambiguity in the Low Resource Setting

It is challenging to observe trends by part-of-speech tag in the low resource setting due

to the low numbers of all types of tags, however it is apparent that the trends which

were observed in the medium resource setting and discussed in Section 5.2 are less

common in the low resource setting. Instead, there were some entirely different types

of common errors, as discussed in Section 3.4. Firstly the baseline model makes many

mistakes with consonants:

‘film’ ! ‘fily’
‘zone’ ! ‘jone’
‘cot’ ! ‘coyt’

It also frequently predicts ‘être’ which is one of the most common in French for seem-

ingly random input words:

‘etape’ ! ‘être’
‘kerr’ ! ‘être’

‘zones’ ! ‘être’

There are also errors of a similar kind to the medium resource setting, when no at-

tempt is made to de-inflect a verb or plural noun, despite similar verbs being correctly

lemmatized:

‘défoncé’ ! ‘défoncé’ (instead of défoncer)
‘rèvéle’ ! ‘rèvéle’ (instead of rèvéler)
‘photos’ ! ‘photos’ (instead of photo)

None of these errors are obviously corrected by the MTL models. Potentially the gains
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in this setting for some languages could be due to the large variances in performance

between training runs or for another reason which was not obvious to us.

5.5 Research Question Review

1. Does MTL with the auxiliary task of part-of-speech tagging improve the perfor-

mance of Lematus?

Yes, MTL with the auxiliary task of POS tagging does appear to improve perfor-

mance over the baseline model of Lematus, particularly with respect to unseen

tokens in the medium resource setting.

2. Does MTL with the auxiliary task of POS tagging improve performance for spe-

cific POS tags and/or ambiguous tokens?

Yes, in the medium resource setting certain types of error related to knowledge

of the POS tag are clearly improved by the addition of the auxiliary task of POS

tagging.

3. Are these conclusions different in a low-resource setting?

For all languages except English, POS tagging does also appear to provide per-

formance in the low resource setting. However, the reasons for this improvement

are less clear.

What is clear is that the two resource settings exhibit different issues in the be-

haviour of the baseline model and also different differences between the baseline

model and MTL models. The different resource settings are apparently differ-

ent problems which therefore behave differently when extended to multi-task

learning.

5.6 Test Set Results

As in the previous chapter, conclusions about the auxiliary task of POS tagging until

this point have been made on a validation set which was also used to decide when to

stop training each model. The final step is to test these conclusions on a held-out test

set, which has been ignored until this point in order to avoid inadvertently tuning the
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models to this set. They offer the best estimate of how well a model’s performance

will generalize to new data which has not been used to tune the model.

5.6.1 Medium Resource

In the medium resource setting, the test set results yield similar conclusions to the

validation set results previously discussed. There are performance gains with respect

to overall accuracy of between 0.79% and 2.52% and gains of between 0.71% and

3.74% for unseen accuracy, confirming the usefulness of the auxiliary task of POS

tagging in the medium resource setting for this task.

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 94.30% 92.02% 83.65% 88.91% 89.86% 93.95%

Best MTL Model 96.18% 93.51% 84.85% 91.43% 91.48% 94.73%

Improvement +1.88% +1.48% +1.20% +2.52% +1.62% +0.79%

Table 5.10: (Auxiliary Task: POS Tagging) Average Overall Test Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 96.70% 96.58% 94.72% 97.51% 96.75% 96.92%

Best MTL Model 99.02% 97.49% 95.71% 98.99% 98.03% 97.68%

Improvement +2.32% +0.91% +0.99% +1.47% +1.29% +0.77%

Table 5.11: (Auxiliary Task: POS Tagging) Average Seen Test Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 87.94% 79.19% 68.69% 78.90% 80.59% 86.77%

Best MTL Model 88.66% 82.29% 70.19% 82.64% 83.00% 87.61%

Improvement +0.71% +3.10% +1.50% +3.74% +2.40% +0.84%

Table 5.12: (Auxiliary Task: POS Tagging) Average Unseen Test Accuracy figures
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Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 72.22% 95.73% 87.36% 97.95% 75.00% 86.66%

Best MTL Model 89.63% 96.09% 87.44% 99.17% 76.79% 89.42%

Improvement +17.41% +0.35% +0.08% +1.22% +1.79% +2.76%

Table 5.13: (Auxiliary Task: POS Tagging) Average Ambiguous Test Accuracy figures

5.6.2 Low Resource

Again, in the low resource setting the test set results confirm those of the validation

set, with overall and unseen validation accuracy improving for all languages except

English. It seems that POS tagging is therefore also a useful auxiliary task in the low

resource setting in terms of improving overall accuracy.

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 85.42% 78.71% 61.67% 72.42% 66.54% 69.29%

Best MTL Model 85.38% 79.92% 65.17% 72.87% 71.17% 76.42%

Improvement -0.04% +1.21% +3.50% +0.46% +4.62% +7.12%

Table 5.14: (Auxiliary Task: POS Tagging) Average Overall Test Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 97.49% 95.29% 94.83% 97.61% 91.67% 88.65%

Best MTL Model 97.95% 95.29% 95.63% 98.24% 96.26% 91.73%

Improvement +0.46% +0.00% +0.80% +0.63% +4.60% +3.07%

Table 5.15: (Auxiliary Task: POS Tagging) Average Seen Test Accuracy figures

Model English French Croatian Hungarian Turkish Hindi
Lematus Baseline 70.73% 56.27% 42.81% 59.94% 56.28% 47.57%

Best MTL Model 70.08% 59.31% 48.89% 60.93% 61.74% 60.83%

Improvement -0.65% +3.04% +6.08% +1.00% +5.46% +13.26%

Table 5.16: (Auxiliary Task: POS Tagging) Average Unseen Test Accuracy figures
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Results Part 3: Auto-Encoding,

Tagging and their Differences

The final research question posed was as follows:

In cases where both auxiliary tasks separately improved performance,
does the use of both auxiliary tasks further improve performance?

There was no clear link between the difference in performance caused for the two sep-

arate auxiliary tasks for a given language and resource settings. For some languages,

both auxiliary tasks improved accuracy. For others, such as English in the low-resource

setting, one auxiliary task improved performance but the other did not. The purpose

of this question was therefore to investigate if for languages and resource setting in

which both auxiliary tasks increased accuracy, the improvements offered to the base-

line by the different tasks could be leveraged together to increase accuracy more than

either auxiliary task could alone. If the improvement instead plateaued, this would

potentially suggest that some of the benefits offered by the two tasks were the same.

In the medium resource setting Hindi, Hungarian and English were improved by both

auxiliary tasks in terms of overall accuracies. In the low resource setting Hindi, Turkish

and Croatian were improved by both tasks specifically when joint training was used.

The lemmatization model for these languages was therefore trained with both auxiliary

tasks and the relevant training type(s), with one encoder as before but 3 decoders cor-

responding to the main task, auto-encoding and part-of-speech tagging respectively, as

briefly outlined in Figure 6.1.

83
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Figure 6.1: Multi-Task Lematus Architecture with both auxiliary tasks

6.1 Accuracy in the Medium Resource Setting

In the medium resource setting, the results using both tasks were either very simi-

lar to the best results obtained from single auxiliary tasks for each language or with

small increases in accuracy. For example, the best result until this point for Hungarian

increased the baseline accuracy by 2.25% using the auxiliary task of part-of-speech

tagging. Using both tasks increased baseline accuracy by 2.56%. Similarly English

improved by 1.78% in terms of overall accuracy using both auxiliary tasks, in compar-

ison to 1.5% with just part-of-speech tagging. Hindi had very similar performance in

both cases, with 0.8% improvement using both auxiliary tasks versus 0.83% with just

part-of-speech tagging.
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Model English Hindi Hungarian
Lematus Baseline 94.77% 93.95% 91.57%

Best MTL Model 96.55% 94.75% 94.12%

Improvement +1.78% +0.80% +2.56%

Table 6.1: (Auxiliary task: Auto-Encoding + POS Tagging) Average Overall Validation

Accuracy figures

Model English Hindi Hungarian
Lematus Baseline 97.13% 96.78% 97.62%

Best MTL Model 99.18% 97.54% 99.02%

Improvement +2.05% +0.76% +1.41%

Table 6.2: (Auxiliary task: Auto-Encoding + POS Tagging) Average Seen Validation

Accuracy figures

Model English Hindi Hungarian
Lematus Baseline 88.31% 87.67% 83.67%

Best MTL Model 89.34% 88.83% 87.73%

Improvement +1.03% +1.15% +4.06%

Table 6.3: (Auxiliary task: Auto-Encoding + POS Tagging) Average Unseen Validation

Accuracy figures

Model English Hindi Hungarian
Lematus Baseline 63.27% 86.94% 99.30%

Best MTL Model 86.39% 89.58% 99.49%

Improvement +23.13% +2.65% +0.19%

Table 6.4: (Auxiliary task: Auto-Encoding + POS Tagging) Average Ambiguous Valida-

tion Accuracy figures
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6.2 Accuracy in the Low Resource Setting

In the low resource setting both Hindi and Croatian improve slightly more in com-

parison to single task accuracy. In contrast, the improvement for Turkish decreases

significantly from 5.7% for the auxiliary task of auto-encoding alone or 4.25% for

POS tagging alone to 2.25% when both are used.

Model Hindi Turkish Croatian
Lematus Baseline 64.79% 67.42% 61.58%

Best MTL Model 76.17% 69.67% 67.42%

Improvement +11.38% +2.25% +5.83%

Table 6.5: (Auxiliary task: Auto-Encoding + POS Tagging) Average Overall Validation

Accuracy figures

Model Hindi Turkish Croatian
Lematus Baseline 90.83% 92.66% 96.30%

Best MTL Model 94.65% 92.22% 97.17%

Improvement +3.82% -0.44% +0.87%

Table 6.6: (Auxiliary task: Auto-Encoding + POS Tagging) Average Seen Validation

Accuracy figures

Model Hindi Turkish Croatian
Lematus Baseline 33.61% 57.42% 40.08%

Best MTL Model 54.49% 61.31% 48.99%

Improvement +20.88% +3.90% +8.91%

Table 6.7: (Auxiliary task: Auto-Encoding + POS Tagging) Average Unseen Validation

Accuracy figures

For each language the improvement in accuracy for unseen tokens was significantly

greater than that of seen tokens, particularly for Hindi and Croatian. These results

were similar for the test sets, which are included in Appendix F.
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6.3 Research Question Review

In cases where both auxiliary tasks separately improved performance, does the use of

both auxiliary tasks further improve performance?

For some languages there was further improvement above that of a single auxiliary

task, but not unanimously. When there is further improvement it is often by a relatively

small margin. This potentially suggests that some of the same errors were corrected by

the addition of each auxiliary task.





Chapter 7

Conclusion

In conclusion, improvements can be made to the performance of a sequence-to-sequence

neural model of lemmatization by extending the model to a multi-task learning setting

with an appropriate auxiliary task. However, which auxiliary task this is and why it

improves the model appears to depend on both the language being lemmatized and the

size of the dataset. It remains unclear why auto-encoding improves the performance

of the model for languages such as Croatian and Turkish, although this improvement

was nevertheless confirmed by the test set results. In contrast, in the medium resource

setting there is evidence that information about the part-of-speech tag is reducing the

prevalence of errors related to the part-of-speech tag of the input word, such as the

model incorrectly attempting to de-inflect nouns or not attempting to de-inflect verbs.

In relation to Caruna (1993)’s previously discussed proposed effect of MTL that ‘MTL

uses the information contained in the training signal of related tasks to bias the learner

to hypotheses that benefit multiple tasks’, MTL with this particular one-to-many model

architecture of a single encoder and multiple decoders does not appear to bias the

actual output of the main task towards an output that benefits both tasks by increasing

the number of outputs which are identical to the input wordform in the case of auto-

encoding. Instead, there is evidence that the auxiliary task of part-of-speech tagging is

providing a more indirect effect by providing information about the part-of-speech tag

in some way. In relation to previous findings that a lower proportion of auxiliary task

to main task training is preferable, in the medium resource setting for the auxiliary task

of part-of-speech tagging this was confirmed. However the same was not true for the

auxiliary task of auto-encoding or for either task in the low resource setting.
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In general, the effects of multi-task learning for this model of lemmatization clearly

depend on both the language and dataset size. When there are improvements offered

by MTL for a given language for both the medium and low resource settings, they

are of a larger magnitude for the low resource models. However, it is not always

true that the same languages are improved or not improved in the medium and low

resource settings for a given auxiliary task. For example POS tagging improves the

performance of English in only the medium resource setting and similarly Hungarian

is only improved by the auxiliary task of auto-encoding in the medium resource setting.

This suggests that for each language the two resource settings are different problems

with correspondingly different solutions.

Ultimately, each language and resource setting pair was improved by at least one of

the two auxiliary tasks, sometimes by considerable margins. The largest improvements

were almost unanimously for unseen tokens although overall unseen and ambiguous

tokens still under-perform in comparison to seen tokens. An key strength of using

MTL in the way outlined in this work in order to improve performance is that at test

time all that is needed is the input words in context. While part-of-speech tags are

needed to train the model, they are not input when the model is in use meaning that the

models needs only running text as input.

Although this work answered some questions about the conjectured behaviour of MTL

models in this setting, many remain. In particular as the hypothesized behaviour was

not observed for the auxiliary task of auto-encoding and in the low-resource setting for

the auxiliary task of POS tagging, the question remains as to where these improvements

originated.

7.1 Research Question Review

The following questions were posed at the beginning of this report:

1. Does the auxiliary task of auto-encoding bias the model towards copying behav-

ior, therefore benefiting languages with a high proportion of lemmas which are

identical to their corresponding inflected wordforms?

No, the auxiliary task of auto-encoding does not appear to bias the model to-

wards copying behaviour, however despite this it does improve performance for

English, Hungarian, Turkish and Hindi.
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2. Does the auxiliary task of POS tagging appear to provide information relevant

to the main task of lemmatization, for example in helping to disambiguate am-

biguous words?

Yes, the auxiliary task of POS tagging does appear to provide relevant informa-

tion for the main task of lemmatization as demonstrated in the error analysis of

the MTL models in the medium resource setting.

3. Does the MTL framework benefit lower resource models more than higher re-

source models?

When a given auxiliary task improves performance in both resource settings for

a given language, the margin of improvement is higher in the lower resource

setting. However the reasons for this improvement are also less clear and there

is more variation in performance in the low resource setting. It is also not a given

that an auxiliary task which improves performance for a language in the medium

resource setting will also improve it in the low resource setting and vice versa.

4. In cases where both auxiliary tasks separately improved performance, does the

use of both auxiliary tasks further improve performance thus potentially imply-

ing that they are providing different improvements?

Yes, for some languages and resource settings when the individual tasks both

improved performance, there is further gains made by using both auxiliary tasks.

However, for other languages the use of both auxiliary tasks decreases accuracy.

7.2 Limitations

There were several limitations of the work presented here:

• This work was based on one specific sequence-to-sequence neural model, that of

Lematus (Bergmanis and Goldwater, 2018). The effects of MTL as reported here

may differ for other sequence-to-sequence models applied to lemmatization, for

example models with fewer layers or without an attention mechanism.

• More training runs for each model (for example 5 or 10 instead of 3) would have

been preferable had time allowed.
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• Training models for more languages would have been preferable had time al-

lowed. Although an attempt was made to select languages with varied proper-

ties, this could clearly have been more comprehensively done with 30 languages

than 6. This may have revealed more relationships between dataset properties

and performance.

• Examining the effects for the full available data set size for each language would

provide a clearer picture of the effects of MTL when the full amount of training

data is available for a given language

• Our error analysis of the output data for Hindi, Turkish, Hungarian and Croa-

tian would have benefited from input by a native speaker of those languages.

Although basic patterns such as incorrect consonants or cutting off the end of

words were easily identifiable, other trends may have been immediately obvious

to speakers of languages which were not obvious to us.

7.3 Future Directions

Apart from the obvious extensions addressing the limitations listed above, there the

following are promising further directions for this work:

• Investigating other training schedules related to alternating training. For exam-

ple in the medium resource decreasing the proportion of batches used to train

the auxiliary task as the main tasks nears convergence may speed up this conver-

gence.

• Investigating pre-training the low-resource models to auto-encode inputs, mo-

tivated by the fact that many low-resource models appear to often output the

wrong consonant, for example outputting lone as the lemma of zone.

• Further investigating other proposed effects of MTL in this setting, for example

that of regularization, with appropriate experiments.
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Appendix A

Baseline Results Continued

Baseline 1: Copy the Input Word as the Output Lemma

Language Training Size Overall Acc Seen Acc Unseen Acc Ambiguous Acc.

English 10k 82.39% 83.95% 78.10% 50%

1k 83.75% 86.67% 80.27% 100% (from 6)

Turkish 10k 46.28% 62.66% 24.31% 35.83%

1k 49.13% 76.44% 38.43% 0%(from 0)

French 10k 65.13% 65.88% 63.23% 42.16%

1k 67.25% 66.51% 68.06% 62.24%(from 98)

Hungarian 10k 66.08% 83.82% 42.98% 97.72%

1k 61.88% 92.75% 45.61% 0%(from 0)

Croatian 10k 41.99% 50.05% 29.50% 16.75%

1k 39.00% 52.29% 30.77% 0%(from 1)

Hindi 10k 71.64% 66.09% 79.50% 47.67%

1k 65.88% 65.60% 66.21% 52.08%(from 48)

Baseline 2: If input word seen during training, output the most frequent lemma
for that input word as output. If unseen during training, copy the input word as
the output lemma
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96 Appendix A. Baseline Results Continued

Language Training Size Overall Acc Seen Acc Unseen Acc Ambiguous Acc.

English 10k 93.25% 98.76% 78.10% 59.18%

1k 90.00% 98.16% 80.27% 0%(from 6)

Turkish 10k 66.78% 98.45% 24.31% 67.50%

1k 55.50% 99.11% 38.43% 0%(from 0)

French 10k 88.58% 98.62% 63.23% 97.49%

1k 84.25% 99.04% 68.07% 95.90%

Hungarian 10k 74.79% 99.23% 42.98% 99.51%

1k 64.38% 100% 45.61% 0%(from 0)

Croatian 10k 70.58% 97.10% 29.50% 91.02%

1k 56.88% 99.02% 30.77% 100%(from 1)

Hindi 10k 90.22% 95.05% 79.50% 73.31%

1k 81.25% 93.81% 66.21% 52.08%(from 48)

Baseline 3: Lematus (Bergmanis and Goldwater, 2018)

Language Training Size Overall Acc Seen Acc Unseen Acc Ambiguous Acc.

English 10k 94.77% 97.70% 88.26% 97.70%

1k 87.04% 98.52% 73.13% 98.52%

Turkish 10k 89.21% 97.53% 78.71% 97.53%

1k 67.42% 92.66% 57.32% 92.66%

French 10k 93.34% 97.70% 82.36% 97.70%

1k 77.25% 97.60% 55.00% 97.60%

Hungarian 10k 91.57% 96.99% 83.65% 96.99%

1k 74.38% 99.40% 60.78% 99.40%

Croatian 10k 85.40% 95.96% 69.69% 95.96%

1k 61.58% 96.39% 40.00% 96.39%

Hindi 10k 93.95% 98.81% 87.64% 98.81%

1k 64.79% 95.70% 33.52% 95.70%
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Lematus Copying Behaviour

Note the drop in copying for many languages between seen and unseen tokens.

Language Train Size Overall Copied Seen Copied Unseen Copied Amb. Copied

English 10k 81.98% 85.13% 73.31% 81.29%

1k 79.87% 87.05% 71.32% 100%(from 6)

Turkish 10k 46.80% 63.06% 24.80% 32.23%

1k 49.58% 80.47% 37.35% 0%(from 0)

French 10k 66.25% 66.76% 64.99% 42.77%

1k 60.17% 67.38% 52.27% 65.31%

Hungarian 10k 67.04% 83.62% 38.24% 98.13%

1k 60.71% 92.86% 43.40% 0%(from 0)

Croatian 10k 42.02% 50.76% 28.77% 17.72%

1k 35.63% 52.07% 25.44% 33%(from 1)

Hindi 10k 71.44% 68.12% 78.79% 46.50%

1k 50.54% 67.66% 30.04% 72.92%
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Appendix B

Further Auto-Encoding Results

Figure B.1: Seen Validation accuracies for 10,000 training examples with the auxiliary

task of auto-encoding, obtained by averaging three training runs. Plot details discussed

Figure 4.1
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Figure B.2: Ambiguous Validation accuracies for 10,000 training examples with the

auxiliary task of auto-encoding, obtained by averaging three training runs. Plot details

discussed Figure 4.1
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Figure B.3: Unseen copying behaviour for 10,000 training examples with the auxiliary

task of auto-encoding, obtained by averaging three training runs. Plot details discussed

Figure 4.1
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Figure B.4: Seen Validation accuracies for 1000 training examples with the auxiliary

task of auto-encoding, obtained by averaging three training runs. Plot details discussed

Figure 4.1
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Appendix C

Example Ensembling Results:

Auto-Encoding

Figure C.1: Overall Validation accuracies for 10,000 training examples with the aux-

iliary task of auto-encoding, obtained by ensembling three training runs. Plot details

discussed Figure 4.1
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This appendix contains ensembling results, the plots for all types of accuracy were not

included as they offered little extra insight. The conclusions are very similar to those

of average accuracies, although as is often expected with ensembling, the accuracies

are often slightly higher when ensembled in comparison to when they are averaged. It

was interesting to observe how much disagreement there was between training runs for

each model (e.g. the number of outputs for the ensemble for each setup which were

randomly chosen from three different outputs). However, ultimately there was no clear

trend in MTL either increasing or decreasing this level of disagreement.

Figure C.2: Unseen Validation accuracies for 10,000 training examples with the aux-

iliary task of auto-encoding, obtained by ensembling three training runs. Plot details

discussed Figure 4.1
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Low Resource

It was also interesting to note what happened to those models which had high standard

deviations for average accuracies. Often, for example in the case of the performance of

the French Alternate 2:1 setup in the low resource setting, the ensemble result was not

noticeably lower for these models than for those with less deviation in performance.

Figure C.3: Overall Validation accuracies for 1000 training examples with the auxiliary

task of auto-encoding, obtained by ensembling three training runs. Plot details dis-

cussed Figure 4.1
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Figure C.4: Unseen Validation accuracies for 1000 training examples with the auxil-

iary task of auto-encoding, obtained by ensembling three training runs. Plot details

discussed Figure 4.1





Appendix D

Further Analysis of Auto-Encoding

Results

The results outlined in Chapter 4 lead to a very broad question. If the improvement

observed for some languages when the auxiliary task of auto-encoding is added to

the model is not caused by increasing the level of copying, particular in the medium

resource setting, then what is it caused by? An obvious possible explanation is that

although copying has not increased, perhaps the confusion matrices shown in Figures

3.13 and 3.15 have been improved. However, this is clearly not the case as demon-

strated in Figures D.1 and D.2 where each model has either the same or a higher level

of false negatives with respect to copying.
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(a) Hindi Lematus Baseline (b) Hindi Alternating 10:1

(c) Hindi Alternating 2:1 (d) Hindi Alternating 1:1

(e) Hindi Joint a = 0.2 (f) Hindi Joint a = 0.5

(g) Hindi Joint a = 0.8

Figure D.1: Confusion Matrices for Copying Behavior in Lematus in the Medium Re-

source Setting
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(a) Hindi Lematus Baseline (b) Hindi Alternating 10:1

(c) Hindi Alternating 2:1 (d) Hindi Alternating 1:1

(e) Hindi Joint a = 0.2 (f) Hindi Joint a = 0.5

(g) Hindi Joint a = 0.8

Figure D.2: Confusion Matrices for Unseen Copying Behavior in Lematus in the Medium

Resource Setting
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Appendix E

Example Ensembling Results: Part of

Speech Tagging

Figure E.1: Unseen Validation accuracies for 10,000 training examples with the auxiliary

task of POS tagging, obtained by ensembling three training runs. Plot details discussed

Figure 4.1
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Again, some example results obtained by ensembling instead of averaging accuracies

are included here, although they offered little addition insight.

Figure E.2: Unseen Validation accuracies for 1000 training examples with the auxiliary

task of POS tagging, obtained by ensembling three training runs. Plot details discussed

Figure 4.1
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Figure E.3: Unseen Validation accuracies for 10,000 training examples with the auxiliary

task of POS tagging, obtained by ensembling three training runs. Plot details discussed

Figure 4.1



Appendix F

Test Set Results for Both Auxiliary

Tasks

Medium Resource

The same patterns were shown in the test set results for multi-task learning using both

tasks as were present for the validation set results. Both English and Hungarian slightly

improved over the best test set results for an individual auxiliary task, while Hindi was

slightly decreased.

Model English Hindi Hungarian
Lematus Baseline 94.30% 93.95% 88.91%

Best MTL Model 96.46% 94.67% 91.77%

Improvement +2.16% +0.72% +2.85%

Table F.1: (Auxiliary task: Auto-Encoding + POS Tagging) Average Overall Test Accu-

racy figures

Model English Hindi Hungarian
Lematus Baseline 96.70% 96.92% 97.51%

Best MTL Model 99.04% 97.61% 98.91%

Improvement +2.34% +0.70% +1.39%

Table F.2: (Auxiliary task: Auto-Encoding + POS Tagging) Average Seen Test Accuracy

figures
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Model English Hindi Hungarian
Lematus Baseline 87.94% 86.77% 78.90%

Best MTL Model 89.63% 87.78% 83.46%

Improvement +1.69% +1.01% +4.55%

Table F.3: (Auxiliary task: Auto-Encoding + POS Tagging) Average Unseen Test Accu-

racy figures

Model English Hindi Hungarian
Lematus Baseline 72.22% 86.66% 97.95%

Best MTL Model 88.52% 90.55% 98.98%

Improvement +16.30% +3.89% +1.02%

Table F.4: (Auxiliary task: Auto-Encoding + POS Tagging) Average Ambiguous Test

Accuracy figures

Low Resource

Again, Hindi was slightly improved while Turkish was noticeably disimproved in com-

parison to test set results for a single auxiliary task. Croatian slightly decreases from

4.46% improvement for auto-encoding to 4.08% here.

Model Hindi Turkish Croatian
Lematus Baseline 69.29% 66.54% 61.67%

Best MTL Model 79.25% 70.17% 65.75%

Improvement +9.96% +3.62% +4.08%

Table F.5: (Auxiliary task: Auto-Encoding + POS Tagging) Average Overall Test Accu-

racy figures
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Model Hindi Turkish Croatian
Lematus Baseline 88.65% 91.67% 94.83%

Best MTL Model 92.28% 93.82% 94.37%

Improvement +3.62% +2.16% +-0.46%

Table F.6: (Auxiliary task: Auto-Encoding + POS Tagging) Average Seen Test Accuracy

figures

Model Hindi Turkish Croatian
Lematus Baseline 47.57% 56.28% 42.81%

Best MTL Model 66.49% 61.21% 49.61%

Improvement +18.92% +4.93% +6.80%

Table F.7: (Auxiliary task: Auto-Encoding + POS Tagging) Average Unseen Test Accu-

racy figures





Bibliography

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-

ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale ma-

chine learning. In Proceedings of the 12th USENIX Conference on Oper-

ating Systems Design and Implementation, OSDI’16, pages 265–283, Berke-

ley, CA, USA, 2016. USENIX Association. ISBN 978-1-931971-33-1. URL

http://dl.acm.org/citation.cfm?id=3026877.3026899.

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry

Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexan-

der Belopolsky, et al. Theano: A python framework for fast computation of mathe-

matical expressions. arXiv preprint, 2016.
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Mathematics and Physics, Charles University.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv

preprint arXiv:1706.05098, 2017.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparame-

terization to accelerate training of deep neural networks. In Advances in Neural

Information Processing Systems, pages 901–909, 2016.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow,

Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
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